Serveur d'exploration sur le Covid à Stanford

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Will Hydroxychloroquine Still Be a Game-Changer for COVID-19 by Combining Azithromycin?

Identifieur interne : 000145 ( Main/Exploration ); précédent : 000144; suivant : 000146

Will Hydroxychloroquine Still Be a Game-Changer for COVID-19 by Combining Azithromycin?

Auteurs : Chunfeng Li [États-Unis] ; Genhong Cheng [États-Unis]

Source :

RBID : pubmed:32849658

Descripteurs français

English descriptors

Abstract

Recent small-scale clinical trials have shown promising results in the use of hydroxychloroquine, an FDA approved anti-malaria drug, for the treatment of COVID-19. However, large scale, randomized and double-blind clinical trials are needed to confirm the safety and efficacy of hydroxychloroquine in COVID-19 patients. Here, we review the progress of using hydroxychloroquine or chloroquine as anti-viral agents, failed clinical trials of chloroquine in treatment of dengue virus and influenza infection, and especially the mechanism of azithromycin in inhibiting viral replication, so as to shed light on the ongoing clinical trials and further researches of hydroxychloroquine on SARS-CoV-2 infected patients.

DOI: 10.3389/fimmu.2020.01969
PubMed: 32849658
PubMed Central: PMC7426511


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Will Hydroxychloroquine Still Be a Game-Changer for COVID-19 by Combining Azithromycin?</title>
<author>
<name sortKey="Li, Chunfeng" sort="Li, Chunfeng" uniqKey="Li C" first="Chunfeng" last="Li">Chunfeng Li</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institute for Immunity, Transplantation, and Infection, School of Medicine, Stanford University, Stanford, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Institute for Immunity, Transplantation, and Infection, School of Medicine, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
</author>
<author>
<name sortKey="Cheng, Genhong" sort="Cheng, Genhong" uniqKey="Cheng G" first="Genhong" last="Cheng">Genhong Cheng</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32849658</idno>
<idno type="pmid">32849658</idno>
<idno type="doi">10.3389/fimmu.2020.01969</idno>
<idno type="pmc">PMC7426511</idno>
<idno type="wicri:Area/Main/Corpus">000380</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000380</idno>
<idno type="wicri:Area/Main/Curation">000380</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000380</idno>
<idno type="wicri:Area/Main/Exploration">000380</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Will Hydroxychloroquine Still Be a Game-Changer for COVID-19 by Combining Azithromycin?</title>
<author>
<name sortKey="Li, Chunfeng" sort="Li, Chunfeng" uniqKey="Li C" first="Chunfeng" last="Li">Chunfeng Li</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institute for Immunity, Transplantation, and Infection, School of Medicine, Stanford University, Stanford, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Institute for Immunity, Transplantation, and Infection, School of Medicine, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
</author>
<author>
<name sortKey="Cheng, Genhong" sort="Cheng, Genhong" uniqKey="Cheng G" first="Genhong" last="Cheng">Genhong Cheng</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in immunology</title>
<idno type="eISSN">1664-3224</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Antiviral Agents (therapeutic use)</term>
<term>Azithromycin (therapeutic use)</term>
<term>Betacoronavirus (drug effects)</term>
<term>COVID-19 (MeSH)</term>
<term>Coronavirus Infections (drug therapy)</term>
<term>Coronavirus Infections (virology)</term>
<term>Disease Models, Animal (MeSH)</term>
<term>Drug Therapy, Combination (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Hydroxychloroquine (adverse effects)</term>
<term>Hydroxychloroquine (therapeutic use)</term>
<term>Mice (MeSH)</term>
<term>Pandemics (MeSH)</term>
<term>Pneumonia, Viral (drug therapy)</term>
<term>Pneumonia, Viral (virology)</term>
<term>Randomized Controlled Trials as Topic (MeSH)</term>
<term>SARS-CoV-2 (MeSH)</term>
<term>Treatment Outcome (MeSH)</term>
<term>Virus Replication (drug effects)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Antiviraux (usage thérapeutique)</term>
<term>Association de médicaments (MeSH)</term>
<term>Azithromycine (usage thérapeutique)</term>
<term>Betacoronavirus (effets des médicaments et des substances chimiques)</term>
<term>Essais contrôlés randomisés comme sujet (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Hydroxychloroquine (effets indésirables)</term>
<term>Hydroxychloroquine (usage thérapeutique)</term>
<term>Infections à coronavirus (traitement médicamenteux)</term>
<term>Infections à coronavirus (virologie)</term>
<term>Modèles animaux de maladie humaine (MeSH)</term>
<term>Pandémies (MeSH)</term>
<term>Pneumopathie virale (traitement médicamenteux)</term>
<term>Pneumopathie virale (virologie)</term>
<term>Réplication virale (effets des médicaments et des substances chimiques)</term>
<term>Résultat thérapeutique (MeSH)</term>
<term>Souris (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="adverse effects" xml:lang="en">
<term>Hydroxychloroquine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="therapeutic use" xml:lang="en">
<term>Antiviral Agents</term>
<term>Azithromycin</term>
<term>Hydroxychloroquine</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Betacoronavirus</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Betacoronavirus</term>
<term>Réplication virale</term>
</keywords>
<keywords scheme="MESH" qualifier="effets indésirables" xml:lang="fr">
<term>Hydroxychloroquine</term>
</keywords>
<keywords scheme="MESH" qualifier="traitement médicamenteux" xml:lang="fr">
<term>Infections à coronavirus</term>
<term>Pneumopathie virale</term>
</keywords>
<keywords scheme="MESH" qualifier="usage thérapeutique" xml:lang="fr">
<term>Antiviraux</term>
<term>Azithromycine</term>
<term>Hydroxychloroquine</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Infections à coronavirus</term>
<term>Pneumopathie virale</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>COVID-19</term>
<term>Disease Models, Animal</term>
<term>Drug Therapy, Combination</term>
<term>Humans</term>
<term>Mice</term>
<term>Pandemics</term>
<term>Randomized Controlled Trials as Topic</term>
<term>SARS-CoV-2</term>
<term>Treatment Outcome</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Association de médicaments</term>
<term>Essais contrôlés randomisés comme sujet</term>
<term>Humains</term>
<term>Modèles animaux de maladie humaine</term>
<term>Pandémies</term>
<term>Résultat thérapeutique</term>
<term>Souris</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Recent small-scale clinical trials have shown promising results in the use of hydroxychloroquine, an FDA approved anti-malaria drug, for the treatment of COVID-19. However, large scale, randomized and double-blind clinical trials are needed to confirm the safety and efficacy of hydroxychloroquine in COVID-19 patients. Here, we review the progress of using hydroxychloroquine or chloroquine as anti-viral agents, failed clinical trials of chloroquine in treatment of dengue virus and influenza infection, and especially the mechanism of azithromycin in inhibiting viral replication, so as to shed light on the ongoing clinical trials and further researches of hydroxychloroquine on SARS-CoV-2 infected patients.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32849658</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>09</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1664-3224</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in immunology</Title>
<ISOAbbreviation>Front Immunol</ISOAbbreviation>
</Journal>
<ArticleTitle>Will Hydroxychloroquine Still Be a Game-Changer for COVID-19 by Combining Azithromycin?</ArticleTitle>
<Pagination>
<MedlinePgn>1969</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fimmu.2020.01969</ELocationID>
<Abstract>
<AbstractText>Recent small-scale clinical trials have shown promising results in the use of hydroxychloroquine, an FDA approved anti-malaria drug, for the treatment of COVID-19. However, large scale, randomized and double-blind clinical trials are needed to confirm the safety and efficacy of hydroxychloroquine in COVID-19 patients. Here, we review the progress of using hydroxychloroquine or chloroquine as anti-viral agents, failed clinical trials of chloroquine in treatment of dengue virus and influenza infection, and especially the mechanism of azithromycin in inhibiting viral replication, so as to shed light on the ongoing clinical trials and further researches of hydroxychloroquine on SARS-CoV-2 infected patients.</AbstractText>
<CopyrightInformation>Copyright © 2020 Li and Cheng.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Chunfeng</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Institute for Immunity, Transplantation, and Infection, School of Medicine, Stanford University, Stanford, CA, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cheng</LastName>
<ForeName>Genhong</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P30 AI028697</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI069120</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>08</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Immunol</MedlineTA>
<NlmUniqueID>101560960</NlmUniqueID>
<ISSNLinking>1664-3224</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000998">Antiviral Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>4QWG6N8QKH</RegistryNumber>
<NameOfSubstance UI="D006886">Hydroxychloroquine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>83905-01-5</RegistryNumber>
<NameOfSubstance UI="D017963">Azithromycin</NameOfSubstance>
</Chemical>
</ChemicalList>
<SupplMeshList>
<SupplMeshName Type="Protocol" UI="C000705127">COVID-19 drug treatment</SupplMeshName>
</SupplMeshList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000998" MajorTopicYN="N">Antiviral Agents</DescriptorName>
<QualifierName UI="Q000627" MajorTopicYN="Y">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017963" MajorTopicYN="N">Azithromycin</DescriptorName>
<QualifierName UI="Q000627" MajorTopicYN="Y">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000073640" MajorTopicYN="N">Betacoronavirus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086382" MajorTopicYN="N">COVID-19</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004195" MajorTopicYN="N">Disease Models, Animal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004359" MajorTopicYN="N">Drug Therapy, Combination</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006886" MajorTopicYN="N">Hydroxychloroquine</DescriptorName>
<QualifierName UI="Q000009" MajorTopicYN="Y">adverse effects</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="Y">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058873" MajorTopicYN="N">Pandemics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011024" MajorTopicYN="N">Pneumonia, Viral</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016032" MajorTopicYN="N">Randomized Controlled Trials as Topic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086402" MajorTopicYN="N">SARS-CoV-2</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016896" MajorTopicYN="N">Treatment Outcome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="N">Virus Replication</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">COVID-19</Keyword>
<Keyword MajorTopicYN="Y">SARS- CoV-2</Keyword>
<Keyword MajorTopicYN="Y">azithromycin (AZM)</Keyword>
<Keyword MajorTopicYN="Y">clinical trial</Keyword>
<Keyword MajorTopicYN="Y">hydroxychloroquine</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>05</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>07</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>9</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32849658</ArticleId>
<ArticleId IdType="doi">10.3389/fimmu.2020.01969</ArticleId>
<ArticleId IdType="pmc">PMC7426511</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2012 May 17;366(20):1881-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22591294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Influenza Other Respir Viruses. 2007 Sep-Nov;1(5-6):189-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19453426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2005 May 15;191(10):1582-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15838784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Zhejiang Da Xue Xue Bao Yi Xue Ban. 2020 May 25;49(2):215-219</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32391667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Travel Med Infect Dis. 2020 Mar - Apr;34:101663</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32289548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1969 Mar;4(2):203-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4306296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Trop Med Hyg. 2006 Mar;74(3):407-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16525098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Dis Poverty. 2017 Aug 2;6(1):116</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28764747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 Jun 18;382(25):2411-2418</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32379955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EBioMedicine. 2017 Oct;24:189-194</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29033372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Nov;83(22):11979-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19759137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Oct 8;323(1):264-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15351731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2017 Aug 7;214(8):2303-2313</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28694387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Dec 13;113(50):14408-14413</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27911847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2020 May 1;130(5):2620-2629</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32217835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med (N Y). 2020 Jun 5;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32838355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Respir J. 2010 Sep;36(3):646-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20150207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2020 Mar;30(3):269-271</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32020029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2018 Jan;149:143-149</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29175128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2020 Jul 28;71(15):732-739</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32150618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Jun 21;11(6):e0157045</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27326859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mem Inst Oswaldo Cruz. 2013 Aug;108(5):596-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23903975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Ophthalmol. 2020 May;213:A3-A4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32247518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Negl Trop Dis. 2010 Aug 10;4(8):e785</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20706626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2020 Mar 28;395(10229):1054-1062</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32171076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncotarget. 2017 May 9;8(19):31601-31611</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28415826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2015 Dec;96(12):3484-3492</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26459826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging (Albany NY). 2018 Nov 14;10(11):3294-3307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30428454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Respir J. 2015 Feb;45(2):428-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25359346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1981 Jun;78(6):3605-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6115382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA. 2020 Apr 28;323(16):1582-1589</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32219428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2013 Feb;23(2):300-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23208422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vector Borne Zoonotic Dis. 2008 Dec;8(6):837-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18620511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Res. 2002 Dec;46(6):545-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12457629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Microbes Infect. 2014 Dec;3(12):e84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26038505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Intensive Care Med. 2020 May;46(5):846-848</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32125452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging (Albany NY). 2020 Mar 30;12(8):6511-6517</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32229706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Obstet Gynecol. 2013 Mar;208(3):221.e1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23254249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2019 Sep 16;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31527024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 Apr 30;382(18):1677-1679</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32109012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Heart J Acute Cardiovasc Care. 2013 Mar;2(1):77-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24062937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA. 2020 Jun 23;323(24):2493-2502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32392282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2020 Jul;583(7815):282-285</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32218527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chin Med Assoc. 2020 Jun;83(6):534-536</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32243270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Pregnancy Childbirth. 2006 May 30;6:18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16734900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cardiol. 2019 Oct;74(4):313-319</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31202488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Mal Infect. 2020 Jun;50(4):384</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32240719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 1987 Dec;31(12):1939-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2449865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Pathog. 2020 Aug;145:104228</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32344177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2009 Aug;53(8):3416-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19506054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Microbes Infect. 2020 Dec;9(1):601-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32178593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA. 2020 Apr 21;323(15):1488-1494</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32125362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Immunol. 2014 Jun;58(6):318-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24773578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2011 Sep;11(9):677-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21550310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2015 Jun;21(6):1065-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25988934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2016 Nov 29;8(12):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27916837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Nov 17;7(1):15771</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29150641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2018 May 17;10(5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29772762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 Jun 11;382(24):2327-2336</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32275812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA Cardiol. 2020 Sep 1;5(9):1036-1041</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32936252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Gesamte Virusforsch. 1972;36(1):93-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4335025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pathogens. 2020 Feb 18;9(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32085410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Malar J. 2014 Nov 25;13:458</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25425434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2020 Apr 21;64(5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32152082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2020 Jul;56(1):105949</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32205204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2008 Oct 1;198(7):962-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18710327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2020 Mar;579(7798):265-269</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32015508</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
<settlement>
<li>Stanford (Californie)</li>
</settlement>
<orgName>
<li>Université Stanford</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Li, Chunfeng" sort="Li, Chunfeng" uniqKey="Li C" first="Chunfeng" last="Li">Chunfeng Li</name>
</region>
<name sortKey="Cheng, Genhong" sort="Cheng, Genhong" uniqKey="Cheng G" first="Genhong" last="Cheng">Genhong Cheng</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidStanfordV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000145 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000145 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidStanfordV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32849658
   |texte=   Will Hydroxychloroquine Still Be a Game-Changer for COVID-19 by Combining Azithromycin?
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32849658" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidStanfordV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Tue Feb 2 21:24:25 2021. Site generation: Tue Feb 2 21:26:08 2021